Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Physica D: Nonlinear Phenomena 258, 11-46, 2013 | 73 | 2013 |
Stability of viscous shocks in isentropic gas dynamics B Barker, J Humpherys, K Rudd, K Zumbrun Communications in mathematical physics 281 (1), 231-249, 2008 | 53 | 2008 |
STABLAB: A MATLAB-based numerical library for Evans function computation B Barker, J Humpherys, K Zumbrun See http://www. impact. byu. edu/stablab, 2009 | 36 | 2009 |
Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow B Barker Journal of Differential Equations 257 (8), 2950-2983, 2014 | 35 | 2014 |
One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics B Barker, J Humpherys, K Zumbrun Journal of Differential Equations 249 (9), 2175-2213, 2010 | 33 | 2010 |
Stability of periodic Kuramoto–Sivashinsky waves B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Applied Mathematics Letters 25 (5), 824-829, 2012 | 30 | 2012 |
Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Journal of Nonlinear Science 27, 285-342, 2017 | 29 | 2017 |
Metastability of solitary roll wave solutions of the St. Venant equations with viscosity B Barker, MA Johnson, LM Rodrigues, K Zumbrun Physica D: Nonlinear Phenomena 240 (16), 1289-1310, 2011 | 28 | 2011 |
Evans function computation for the stability of travelling waves B Barker, J Humpherys, G Lyng, J Lytle Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2018 | 27 | 2018 |
Existence and stability of viscoelastic shock profiles B Barker, M Lewicka, K Zumbrun Archive for rational mechanics and analysis 200 (2), 491-532, 2011 | 23 | 2011 |
Whitham averaged equations and modulational stability of periodic traveling waves of a hyperbolic-parabolic balance law B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Journées équations aux dérivées partielles, 1-24, 2010 | 22 | 2010 |
Numerical proof of stability of viscous shock profiles B Barker, K Zumbrun Mathematical Models and Methods in Applied Sciences 26 (13), 2451-2469, 2016 | 20 | 2016 |
Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation S Yarahmadian, B Barker, K Zumbrun, SL Shaw Journal of mathematical biology 63 (3), 459-492, 2011 | 20 | 2011 |
Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability B Barker, H Freistühler, K Zumbrun Archive for Rational Mechanics and Analysis 217 (1), 309-372, 2015 | 19 | 2015 |
Viscous hyperstabilization of detonation waves in one space dimension B Barker, J Humpherys, G Lyng, K Zumbrun SIAM Journal on Applied Mathematics 75 (3), 885-906, 2015 | 19 | 2015 |
Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity B Barker, O Lafitte, K Zumbrun Acta Mathematica Scientia 30 (2), 447-498, 2010 | 17 | 2010 |
Evans function computation BH Barker Brigham Young University, 2009 | 13 | 2009 |
Computing Evans functions numerically via boundary-value problems B Barker, R Nguyen, B Sandstede, N Ventura, C Wahl Physica D: Nonlinear Phenomena 367, 1-10, 2018 | 12 | 2018 |
Note on the stability of viscous roll waves B Barker, MA Johnson, P Noble, LM Rodrigues, K Zumbrun Comptes Rendus. Mécanique 345 (2), 125-129, 2017 | 10 | 2017 |
Stability of isentropic Navier–Stokes shocks B Barker, J Humpherys, O Lafitte, K Rudd, K Zumbrun Applied mathematics letters 21 (7), 742-747, 2008 | 10 | 2008 |