U-net: Convolutional networks for biomedical image segmentation O Ronneberger, P Fischer, T Brox Medical image computing and computer-assisted intervention–MICCAI 2015: 18th …, 2015 | 101320 | 2015 |
Flownet: Learning optical flow with convolutional networks A Dosovitskiy, P Fischer, E Ilg, P Hausser, C Hazirbas, V Golkov, ... Proceedings of the IEEE international conference on computer vision, 2758-2766, 2015 | 4771 | 2015 |
A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation N Mayer, E Ilg, P Hausser, P Fischer, D Cremers, A Dosovitskiy, T Brox Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 3318 | 2016 |
Medical image computing and computer-assisted intervention–MICCAI 2015 O Ronneberger Springer, 2015 | 2228 | 2015 |
Discriminative unsupervised feature learning with convolutional neural networks A Dosovitskiy, JT Springenberg, M Riedmiller, T Brox Advances in neural information processing systems 27, 2014 | 2049 | 2014 |
U-Net: Convolutional networks for biomedical image segmentation, arXiv: e-print service O Ronneberger, P Fischer, T Brox arXiv preprint arXiv:1505.04597, 2015 | 911 | 2015 |
Flownet: Learning optical flow with convolutional networks P Fischer, A Dosovitskiy, E Ilg, P Häusser, C Hazırbaş, V Golkov, ... arXiv preprint arXiv:1504.06852, 2015 | 754 | 2015 |
U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015 O Ronneberger, P Fischer, T Brox arXiv preprint arXiv:1505.04597, 2015 | 709 | 2015 |
U-net: Convolutional networks for biomedical image segmentation P Fischer, T Brox International Conference on Medical image computing and computer-assisted …, 2015 | 428 | 2015 |
A benchmark for comparison of dental radiography analysis algorithms CW Wang, CT Huang, JH Lee, CH Li, SW Chang, MJ Siao, TM Lai, ... Medical image analysis 31, 63-76, 2016 | 400 | 2016 |
Descriptor matching with convolutional neural networks: a comparison to sift P Fischer, A Dosovitskiy, T Brox arXiv preprint arXiv:1405.5769, 2014 | 330 | 2014 |
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Lecture Notes in Computer Science O Ronneberger, P Fischer, T Brox, N Navab, J Hornegger, WM Wells, ... Chapter 28, 234-241, 2015 | 329 | 2015 |
What makes good synthetic training data for learning disparity and optical flow estimation? N Mayer, E Ilg, P Fischer, C Hazirbas, D Cremers, A Dosovitskiy, T Brox International Journal of Computer Vision 126, 942-960, 2018 | 253 | 2018 |
MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention O Ronneberger, P Fischer, T Brox Springer, 2015 | 183* | 2015 |
U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015) O Ronneberger, P Fischer, T Brox | 160 | 2015 |
U-Net: convolutional networks for biomedical image segmentation. May 18, 2015 O Ronneberger, P Fischer, T Brox | 135 | 2018 |
Image orientation estimation with convolutional networks P Fischer, A Dosovitskiy, T Brox Pattern Recognition: 37th German Conference, GCPR 2015, Aachen, Germany …, 2015 | 104 | 2015 |
U-net: Convolutional networks for biomedical image segmentation. 2015. doi: 10.48550 O Ronneberger, P Fischer, T Brox arXiv preprint ARXIV.1505.04597, 0 | 94 | |
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015 O Ronneberger, P Fischer, T Brox Proceedings, Part III 18, 2015 | 84 | 2015 |
Discriminative unsupervised feature learning with exemplar convolutional neural networks D Alexey, P Fischer, J Tobias, MR Springenberg, T Brox IEEE TPAMI 38 (9), 1734-1747, 2016 | 82 | 2016 |