Follow
Richard McKinley
Richard McKinley
Forschungsleiter (Director of Research), Neuroradiology, Inselspi
Verified email at insel.ch
Title
Cited by
Cited by
Year
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ...
arXiv preprint arXiv:1811.02629, 2018
23152018
ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
O Maier, BH Menze, J Von der Gablentz, L Häni, MP Heinrich, M Liebrand, ...
Medical image analysis 35, 250-269, 2017
5522017
Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge
HJ Kuijf, JM Biesbroek, J De Bresser, R Heinen, S Andermatt, M Bento, ...
IEEE transactions on medical imaging 38 (11), 2556-2568, 2019
3452019
Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure
O Commowick, A Istace, M Kain, B Laurent, F Leray, M Simon, SC Pop, ...
Scientific reports 8 (1), 13650, 2018
2952018
Federated learning enables big data for rare cancer boundary detection
S Pati, U Baid, B Edwards, M Sheller, SH Wang, GA Reina, P Foley, ...
Nature communications 13 (1), 7346, 2022
2482022
Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation
R McKinley, R Meier, R Wiest
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2019
2172019
ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
S Winzeck, A Hakim, R McKinley, JA Pinto, V Alves, C Silva, M Pisov, ...
Frontiers in neurology 9, 679, 2018
1792018
Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation
S Pereira, R Meier, R McKinley, R Wiest, V Alves, CA Silva, M Reyes
Medical image analysis 44, 228-244, 2018
1192018
Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace
S Jung, R Wiest, J Gralla, R McKinley, HP Mattle, D Liebeskind
Swiss medical weekly 147 (4950), w14538-w14538, 2017
1142017
Fully automated stroke tissue estimation using random forest classifiers (FASTER)
R McKinley, L Häni, J Gralla, M El-Koussy, S Bauer, M Arnold, U Fischer, ...
Journal of Cerebral Blood Flow & Metabolism 37 (8), 2728-2741, 2017
992017
Triplanar ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation
R McKinley, M Rebsamen, R Meier, R Wiest
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2020
892020
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
R McKinley, R Wepfer, F Aschwanden, L Grunder, R Muri, C Rummel, ...
Scientific reports 11 (1), 1087, 2021
882021
Stroke lesion outcome prediction based on MRI imaging combined with clinical information
A Pinto, R Mckinley, V Alves, R Wiest, CA Silva, M Reyes
Frontiers in neurology 9, 1060, 2018
872018
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
R McKinley, R Wepfer, L Grunder, F Aschwanden, T Fischer, C Friedli, ...
NeuroImage: Clinical, 102104, 2019
772019
Towards uncertainty-assisted brain tumor segmentation and survival prediction
A Jungo, R McKinley, R Meier, U Knecht, L Vera, J Pérez-Beteta, ...
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2018
732018
Nabla-net: A deep dag-like convolutional architecture for biomedical image segmentation
R McKinley, R Wepfer, T Gundersen, F Wagner, A Chan, R Wiest, ...
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2016
712016
QU-BraTS: MICCAI BraTS 2020 Challenge on QuantifyingUncertainty in Brain Tumor Segmentation-Analysis of Ranking Scores and Benchmarking Results
R Mehta, A Filos, U Baid, C Sako, R McKinley, M Rebsamen, K Dätwyler, ...
Journal of Machine Learning for Biomedical Imaging 1, 2022
542022
Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex parcellation
M Rebsamen, C Rummel, M Reyes, R Wiest, R McKinley
Human brain mapping 41 (17), 4804-4814, 2020
532020
Automatic quality control in clinical 1H MRSI of brain cancer
N Pedrosa de Barros, R McKinley, U Knecht, R Wiest, J Slotboom
NMR in Biomedicine 29 (5), 563-575, 2016
502016
Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
F Kofler, I Ezhov, F Isensee, F Balsiger, C Berger, M Koerner, B Demiray, ...
arXiv preprint arXiv:2103.06205, 2021
472021
The system can't perform the operation now. Try again later.
Articles 1–20