Follow
Xiang 'Shawn' Chen
Xiang 'Shawn' Chen
Verified email at pku.edu.cn - Homepage
Title
Cited by
Cited by
Year
Modnn: Local distributed mobile computing system for deep neural network
J Mao, X Chen, KW Nixon, C Krieger, Y Chen
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 …, 2017
3452017
How convolutional neural network see the world-A survey of convolutional neural network visualization methods
Z Qin, F Yu, C Liu, X Chen
arXiv preprint arXiv:1804.11191, 2018
2962018
How is energy consumed in smartphone display applications?
X Chen, Y Chen, Z Ma, FCA Fernandes
Proceedings of the 14th Workshop on Mobile Computing Systems and …, 2013
2012013
Elfish: Resource-aware federated learning on heterogeneous edge devices
Z Xu, Z Yang, J Xiong, J Yang, X Chen
Ratio 2 (r1), r2, 2019
150*2019
Mednn: A distributed mobile system with enhanced partition and deployment for large-scale dnns
J Mao, Z Yang, W Wen, C Wu, L Song, KW Nixon, X Chen, H Li, Y Chen
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 751-756, 2017
952017
Admm for efficient deep learning with global convergence
J Wang, F Yu, X Chen, L Zhao
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
772019
Fed2: Feature-aligned federated learning
F Yu, W Zhang, Z Qin, Z Xu, D Wang, C Liu, Z Tian, X Chen
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
722021
Interpreting and evaluating neural network robustness
F Yu, Z Qin, C Liu, L Zhao, Y Wang, X Chen
arXiv preprint arXiv:1905.04270, 2019
722019
Quality-retaining OLED dynamic voltage scaling for video streaming applications on mobile devices
X Chen, J Zheng, Y Chen, M Zhao, CJ Xue
Proceedings of the 49th Annual Design Automation Conference, 1000-1005, 2012
662012
Tiny but accurate: A pruned, quantized and optimized memristor crossbar framework for ultra efficient dnn implementation
X Ma, G Yuan, S Lin, C Ding, F Yu, T Liu, W Wen, X Chen, Y Wang
2020 25th Asia and South Pacific design automation conference (ASP-DAC), 301-306, 2020
592020
Progressive weight pruning of deep neural networks using ADMM
S Ye, T Zhang, K Zhang, J Li, K Xu, Y Yang, F Yu, J Tang, M Fardad, S Liu, ...
arXiv preprint arXiv:1810.07378, 2018
542018
{FingerShadow}: An {OLED} Power Optimization Based on Smartphone Touch Interactions
X Chen, KW Nixon, H Zhou, Y Liu, Y Chen
6th Workshop on Power-Aware Computing and Systems (HotPower 14), 2014
522014
Automated runtime-aware scheduling for multi-tenant dnn inference on gpu
F Yu, S Bray, D Wang, L Shangguan, X Tang, C Liu, X Chen
2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), 1-9, 2021
482021
Unsupervised domain adaptation for object detection via cross-domain semi-supervised learning
F Yu, D Wang, Y Chen, N Karianakis, T Shen, P Yu, D Lymberopoulos, ...
arXiv preprint arXiv:1911.07158, 2019
462019
Reform: Static and dynamic resource-aware dnn reconfiguration framework for mobile device
Z Xu, F Yu, C Liu, X Chen
Proceedings of the 56th Annual Design Automation Conference 2019, 1-6, 2019
442019
Fine-grained dynamic voltage scaling on OLED display
X Chen, J Zeng, Y Chen, W Zhang, H Li
17th Asia and South Pacific Design Automation Conference, 807-812, 2012
442012
Fed-cbs: A heterogeneity-aware client sampling mechanism for federated learning via class-imbalance reduction
J Zhang, A Li, M Tang, J Sun, X Chen, F Zhang, C Chen, Y Chen, H Li
International Conference on Machine Learning, 41354-41381, 2023
422023
Sc-uda: Style and content gaps aware unsupervised domain adaptation for object detection
F Yu, D Wang, Y Chen, N Karianakis, T Shen, P Yu, D Lymberopoulos, ...
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2022
412022
Mobile {GPU} power consumption reduction via dynamic resolution and frame rate scaling
KW Nixon, X Chen, H Zhou, Y Liu, Y Chen
6th Workshop on Power-Aware Computing and Systems (HotPower 14), 2014
402014
Heterogeneous federated learning
F Yu, W Zhang, Z Qin, Z Xu, D Wang, C Liu, Z Tian, X Chen
arXiv preprint arXiv:2008.06767, 2020
382020
The system can't perform the operation now. Try again later.
Articles 1–20