Mest: Accurate and fast memory-economic sparse training framework on the edge G Yuan, X Ma, W Niu, Z Li, Z Kong, N Liu, Y Gong, Z Zhan, C He, Q Jin, ... Advances in Neural Information Processing Systems 34, 20838-20850, 2021 | 96 | 2021 |
Rtmobile: Beyond real-time mobile acceleration of rnns for speech recognition P Dong, S Wang, W Niu, C Zhang, S Lin, Z Li, Y Gong, B Ren, X Lin, ... 2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020 | 64 | 2020 |
Radio frequency fingerprinting on the edge T Jian, Y Gong, Z Zhan, R Shi, N Soltani, Z Wang, J Dy, K Chowdhury, ... IEEE Transactions on Mobile Computing 21 (11), 4078-4093, 2021 | 63 | 2021 |
Sparcl: Sparse continual learning on the edge Z Wang, Z Zhan, Y Gong, G Yuan, W Niu, T Jian, B Ren, S Ioannidis, ... NeurIPS'22, 2022 | 60 | 2022 |
Achieving on-mobile real-time super-resolution with neural architecture and pruning search Z Zhan, Y Gong, P Zhao, G Yuan, W Niu, Y Wu, T Zhang, M Jayaweera, ... Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 57 | 2021 |
Compiler-Aware Neural Architecture Search for On-Mobile Real-time Super-Resolution Y Wu, Y Gong, P Zhao, Y Li, Z Zhan, W Niu, H Tang, M Qin, B Ren, ... ECCV'22, 2022 | 29 | 2022 |
A privacy-preserving-oriented dnn pruning and mobile acceleration framework Y Gong, Z Zhan, Z Li, W Niu, X Ma, W Wang, B Ren, C Ding, X Lin, X Xu, ... Proceedings of the 2020 on Great Lakes Symposium on VLSI, 119-124, 2020 | 29 | 2020 |
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors S Chen, G Yuan, X Cheng, Y Gong, M Qin, Y Wang, X Huang ICLR'23, 2022 | 23 | 2022 |
Reverse Engineering of Imperceptible Adversarial Image Perturbations Y Gong, Y Yao, Y Li, Y Zhang, X Liu, X Lin, S Liu ICLR'22, 2022 | 23 | 2022 |
SS-Auto: A single-shot, automatic structured weight pruning framework of DNNs with ultra-high efficiency Z Li, Y Gong, X Ma, S Liu, M Sun, Z Zhan, Z Kong, G Yuan, Y Wang arXiv preprint arXiv:2001.08839, 2020 | 21 | 2020 |
Blk-rew: A unified block-based dnn pruning framework using reweighted regularization method X Ma, Z Li, Y Gong, T Zhang, W Niu, Z Zhan, P Zhao, J Tang, X Lin, B Ren, ... arXiv preprint arXiv:2001.08357, 2020 | 15 | 2020 |
DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning Z Wang, Z Zhan, Y Gong, Y Shao, S Ioannidis, Y Wang, J Dy ICML'23, 2023 | 11 | 2023 |
Chic experience-driven scheduling in machine learning clusters Y Gong, B Li, B Liang, Z Zhan Proceedings of the International Symposium on Quality of Service, 1-10, 2019 | 11 | 2019 |
Blcr: Towards real-time dnn execution with block-based reweighted pruning X Ma, G Yuan, Z Li, Y Gong, T Zhang, W Niu, Z Zhan, P Zhao, N Liu, ... 2022 23rd International Symposium on Quality Electronic Design (ISQED), 1-8, 2022 | 10 | 2022 |
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration Y Gong, G Yuan, Z Zhan, W Niu, Z Li, P Zhao, Y Cai, S Liu, B Ren, X Lin, ... ACM Transactions on Design Automation of Electronic Systems (TODAES), 2021 | 10 | 2021 |
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management Y Gong, Z Zhan, P Zhao, Y Wu, C Wu, C Ding, W Jiang, M Qin, Y Wang ICCAD'22, 2022 | 9 | 2022 |
Zhenglun Kong, Geng Yuan, and Yanzhi Wang. 2020. SS-Auto: A single-shot, automatic structured weight pruning framework of DNNs with ultra-high efficiency Z Li, Y Gong, X Ma, S Liu, M Sun, Z Zhan arXiv preprint arXiv:2001.08839, 2020 | 5 | 2020 |
Exploring Token Pruning in Vision State Space Models Z Zhan, Z Kong, Y Gong, Y Wu, Z Meng, H Zheng, X Shen, S Ioannidis, ... NeurIPS'24, 2024 | 4 | 2024 |
Search for Efficient Large Language Models X Shen, P Zhao, Y Gong, Z Kong, Z Zhan, Y Wu, M Lin, C Wu, X Lin, ... NeurIPS'24, 2024 | 4 | 2024 |
Reverse Engineering of Deceptions on Machine-and Human-Centric Attacks Y Yao, X Guo, V Asnani, Y Gong, J Liu, X Lin, X Liu, S Liu Foundations and Trends® in Privacy and Security 6 (2), 53-152, 2024 | 4 | 2024 |