追蹤
Leslie N. Smith
Leslie N. Smith
在 nrl.navy.mil 的電子郵件地址已通過驗證
標題
引用次數
引用次數
年份
Cyclical learning rates for training neural networks
LN Smith
2017 IEEE winter conference on applications of computer vision (WACV), 464-472, 2017
38132017
Super-convergence: Very fast training of neural networks using large learning rates
LN Smith, N Topin
Artificial intelligence and machine learning for multi-domain operations …, 2019
18142019
A disciplined approach to neural network hyper-parameters: Part 1--learning rate, batch size, momentum, and weight decay
LN Smith
arXiv preprint arXiv:1803.09820, 2018
14862018
A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size, momentum, and weight decay. arXiv 2018
LN Smith
arXiv preprint arXiv:1803.09820, 1803
2131803
Super-convergence: Very fast training of residual networks using large learning rates
LN Smith, N Topin
arXiv preprint arXiv:1708.07120 5, 2017
1902017
Improving dictionary learning: Multiple dictionary updates and coefficient reuse
LN Smith, M Elad
IEEE Signal Processing Letters 20 (1), 79-82, 2012
1622012
Rotational compound state resonances for an argon and methane scattering system
LN Smith, DJ Malik, D Secrest
The Journal of Chemical Physics 71 (11), 4502-4514, 1979
1051979
Deep convolutional neural network design patterns
LN Smith, N Topin
arXiv preprint arXiv:1611.00847, 2016
832016
2017 IEEE winter conference on applications of computer vision (WACV)
LN Smith
IEEE, 2017
642017
Close‐coupling and coupled state calculations of argon scattering from normal methane
LN Smith, D Secrest
The Journal of Chemical Physics 74 (7), 3882-3897, 1981
611981
Super-convergence: very fast training of neural networks using large learning rates, arXiv
LN Smith, N Topin
arXiv preprint arXiv:1708.07120 6, 2017
582017
An approach to explainable deep learning using fuzzy inference
D Bonanno, K Nock, L Smith, P Elmore, F Petry
Next-Generation Analyst V 10207, 132-136, 2017
502017
A Disciplined Approach to Neural Network Hyper-Parameters: Part 1–Learning Rate
LN Smith
Batch size, Momentum, and Weight decay 8, 1803, 2018
392018
Gradual dropin of layers to train very deep neural networks
LN Smith, EM Hand, T Doster
Proceedings of the IEEE conference on computer vision and pattern …, 2016
382016
Restoration of turbulence degraded underwater images
AV Kanaev, W Hou, S Woods, LN Smith
Optical Engineering 51 (5), 057007-057007, 2012
382012
Exploring loss function topology with cyclical learning rates
LN Smith, N Topin
arXiv preprint arXiv:1702.04283, 2017
302017
Disambiguation protocols based on risk simulation
DE Fishkind, CE Priebe, KE Giles, LN Smith, V Aksakalli
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and …, 2007
282007
Cyclical focal loss
LN Smith
arXiv preprint arXiv:2202.08978, 2022
222022
Selecting subgoals using deep learning in minecraft: A preliminary report
D Bonanno, M Roberts, L Smith, DW Aha
IJCAI workshop on deep learning for artificial intelligence 32, 2016
172016
General cyclical training of neural networks
LN Smith
arXiv preprint arXiv:2202.08835, 2022
132022
系統目前無法執行作業,請稍後再試。
文章 1–20