追蹤
Alexander Lerchner
Alexander Lerchner
Senior Staff Scientist, Google DeepMind
在 google.com 的電子郵件地址已通過驗證
標題
引用次數
引用次數
年份
beta-vae: Learning basic visual concepts with a constrained variational framework
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
International conference on learning representations, 2017
59382017
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
13132018
Towards a definition of disentangled representations
I Higgins, D Amos, D Pfau, S Racaniere, L Matthey, D Rezende, ...
arXiv preprint arXiv:1812.02230, 2018
6112018
Monet: Unsupervised scene decomposition and representation
CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ...
arXiv preprint arXiv:1901.11390, 2019
5742019
Multi-object representation learning with iterative variational inference
K Greff, RL Kaufman, R Kabra, N Watters, C Burgess, D Zoran, L Matthey, ...
International conference on machine learning, 2424-2433, 2019
5532019
Darla: Improving zero-shot transfer in reinforcement learning
I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ...
International conference on machine learning, 1480-1490, 2017
5492017
dsprites: Disentanglement testing sprites dataset
L Matthey, I Higgins, D Hassabis, A Lerchner
4702017
Early visual concept learning with unsupervised deep learning
I Higgins, L Matthey, X Glorot, A Pal, B Uria, C Blundell, S Mohamed, ...
arXiv preprint arXiv:1606.05579, 2016
2092016
Spatial broadcast decoder: A simple architecture for learning disentangled representations in vaes
N Watters, L Matthey, CP Burgess, A Lerchner
arXiv preprint arXiv:1901.07017, 2019
1732019
Scan: Learning hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ...
arXiv preprint arXiv:1707.03389, 2017
1482017
Life-long disentangled representation learning with cross-domain latent homologies
A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ...
Advances in Neural Information Processing Systems 31, 2018
1422018
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven exploration
N Watters, L Matthey, M Bosnjak, CP Burgess, A Lerchner
arXiv preprint arXiv:1905.09275, 2019
1322019
Unsupervised Model Selection for Variational Disentangled Representation Learning
S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ...
arXiv preprint arXiv:1905.12614, 2019
972019
Simone: View-invariant, temporally-abstracted object representations via unsupervised video decomposition
R Kabra, D Zoran, G Erdogan, L Matthey, A Creswell, M Botvinick, ...
Advances in Neural Information Processing Systems 34, 20146-20159, 2021
822021
Understanding disentangling in β-VAE. arXiv 2018
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 1804
811804
Multi-object datasets
R Kabra, C Burgess, L Matthey, RL Kaufman, K Greff, M Reynolds, ...
DeepMind 5 (6), 7, 2019
802019
Response variability in balanced cortical networks
A Lerchner, C Ursta, J Hertz, M Ahmadi, P Ruffiot, S Enemark
Neural computation 18 (3), 634-659, 2006
682006
dSprites: disentanglement testing sprites dataset (2017)
L Matthey, I Higgins, D Hassabis, A Lerchner
URL https://github. com/deepmind/dsprites-dataset, 27, 2020
652020
Parts: Unsupervised segmentation with slots, attention and independence maximization
D Zoran, R Kabra, A Lerchner, DJ Rezende
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
522021
Soda: Bottleneck diffusion models for representation learning
DA Hudson, D Zoran, M Malinowski, AK Lampinen, A Jaegle, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
372024
系統目前無法執行作業,請稍後再試。
文章 1–20